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POTENTIALS AND ISOMETRIC 
EMBEDDINGS IN L1 

BY 

L. E. DOR 

ABSTRACT 

l~ does not embed isometrically in L .  for/7 > 2. The question when 17 embeds 
isometrically in L~ is completely answered. 

It is well known that Lp embeds in L1 isometrically, if 1 =< p < 2 (see, e.g., [2]). 

E. D. Bolker [1] conjectured that 13 does not embed isometrically in L1 for p > 2. 

We substantiate this conjecture here. (In the case p > 2.7, this has been done by 

H. S. Witsenhausen [11].) The result we prove (Theorem 1.5) actually implies 

that if E is a Banach space not isometric to a Hilbert space, and if p > 2, then the 

direct sum of E with the real line in the lp sense does not embed isometrically in 

L1. 

This should be contrasted with the recent result of R. Schneider [10], who 

showed that for any n _-> 2 there is an n-dimensional Banach space E such that 

both E and E* embed isometrically in L~, but E is not isometric to l~. 

Schneider's result solved a question of Grothendieck [4], and is striking in view 

of the analogous isomorphic question: Grothendieck [4, p. 66] proved that if E 

and E * embed isomorphically in L~ then E is isomorphic to a Hilbert space. 

In Section 1 we first give an inversion formula for the potential transform on 

the line, and characterize the functions which are potentials of bounded positive 

measures on R. Then we show how potentials arise naturally in the study of 

isometric embeddings of two-dimensional spaces in L~, and prove that such 

embeddings are unique in a certain sense. Finally we use these results to prove 

our main result. 

In Section 2 we show that for 1 < p < ~, 12, embeds isometrically in Lp if and 

only if l < p - < r = < 2 o r  r = 2 .  

Lp denotes the space of pth power integrable functions on [0,1] with 

Ilfll = (fgllf(x)lPdx) ''p, 19 denotes R n with the norm [[(a,; i =< n) l l - -  l a, [P)"". 
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For a set A, 1A is its indicator function, and A is its complement. All the 

Banach spaces considered are over the reals. 

lo 

PROPOSITION 1.1. 

(1) 

Define a function ~o on R by 

(2) q~(t) = f~= Ix - t I dix(x), 

Then q~ is a convex positive function on R s.t. 

Embeddings in L1 

Let IX be a finite positive measure on R satisfying 

f [  Ixldix(x)<~. 

t E R .  

lim ~ 11 IX II ~ IX (R) < ~, and (3) I,l-~ It[ = 

(4) !im {tq~ "(t) - ~ (t)} = - li_m® {t~ "(t) - ~ (t)} is finite. 

This function ~ determines uniquely tx by the relations (3) and 

(5) Ix ( ( -  =, t]) = ~(11 Ix I)+ q~:(t)). 

Conversely, if ~ is a convex function satisfying (3)and (4), then (3)and  (5)define 

a finite positive measure Ix on R satisfying (1) and (2). 

PROOF. ~(t)  is a positive convex function of t, since Ix - t [ is. Dominated 
convergence theorem yields (3) and the possibility to differentiate (2) under the 

integral sign, which gives 

(6) ¢ ' ( t )  = f~® H, (x )d ix (x )  = IX ( ( -  ~, t ] ) -  IX ((t, oo)), 

where H,(x )= (1( .... j - l ( ,~))(x) ,  which renders (5). Also, using (6) and the fact 

that Ix - t l = (t - x)H, (x) we have 

t ,p '( t)-~(t)= f[o x H , ( x ) d i x ( x ) ~  + - f~_= xdix(x) as t~___o¢, 

which shows (4). Now let ~ be convex on R and satisfy the conditions (3) and (4). 

Then ~ ' ( t )  is well defined, increasing, and right-continuous on R. By (3), 

lim . . . .  ~ ' ( t ) =  -I l ix II, so (5) defines a positive Borel measure on R with 
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IX(R) = Ilix II < oo. Let us denote the limit on the left hand side of (4) by c. 

Integrating by parts, and noting that a convex function is absolutely continuous, 

y,~(x t)cl~'(x) [(x t)~'(x) ~(x)]L, 
= b(p "(b) - q~ (b) - tq~ "(b) + q~ (t) ~ c - t It Ix II + ~ (t), as b ~ + oo. 

Similarly, 

f' (t-x)d~,'(x)=-c+tllixll+¢(t) so It-xld¢'(x)=2¢(t), 

proving (2) and (1). Q.E.D. 

REMARKS. (i) The function ( -  q~(t)) is the classical one-dimensional poten- 

tial of the measure IX, in (2). It has been shown [3] that the map Ix ~ ¢  is 

one-to-one, but we did not find in the literature the inversion formula (5) and the 

characterization of potentials given by (3) and (4). 

(ii) Let 1 < p < 0% and consider , ( t )  = f~--I x - t I"dix, for suitable positive 

measures IX. 

QUESTION. IS the map IX ~q~ one-to-one? 

The answer is "yes" for p an odd integer, and "no"  for p an even integer. It 

seems plausible that the answer is "yes"  for p not an integer. 

LEMMA 1.2. Let el, e2 be a basis/or a Banach space E over the reals. De]ine 

the [unction q~ on R by 

(7) ,p (t)--II e l -  te2 II, t E R. 

Then q~ is a positive convex/unction satisfying 

(8) lim ~(t)  I,f-~ It /  - - c E R ,  and 

(9) - lim {~ (t) - t¢ "(t)} =< lim {¢ (t) - t~ "(t)}. 
t ~ - ~  t ~  

Conversely, if ~ is a positive convex function on R satisfying (8) and (9), then 

there is a unique norm 11. }1 on E satisfying (7). 

PROOF. Let ~o be given by (7), and put 

(10) @(u) = II e2-  ue, II, u E R. 

Then (8) holds with c = ~b(0)= lie211. For u #  0, 6 ( u ) =  l u I ,p ( l / ,  SO 
\ u /  
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qt,(u) = (sgn u)~0 ( 1 ) u ~  , [ 1 ~  { ( p ( 1 ) _  1 - u = ~°+lu} : (sgnu)  u~O' (1 )} . ,  

and so 

~b'(0)=-lim,~o_ q~ - u  (p ~ u ] I  <0"(0)=.~0+lim q~ - u q~ u ' 

implying (9). Conversely, if x = ale1 + a2e2 denotes a generic element of E, then 

(7) and the condition II,~x II = 1,~ I" II x II define the value of II x II for a, ~ 0, and [l" II 
is convex on each of the half-planes {x ; a, > 0} and {x ; a, < 0}. Now, (10) defines 

a function q,(u) for u ~ 0. Putting q,(0) = c we obtain a continuous function qt on 

R. q, is convex on each of [0,~) and ( -  ~,0], and by (9), ~b'(0) = < q,'(0), so ~b is 

convex on all of R. Therefore, putting II a2e211 = [a21 ~0(0), we find that I1" II is 

convex on each of the half-planes {x; a2 > 0}and {x; a2 < 0}, and so I1" II is convex 

on E. Q.E.D. 

REMARK. If we put ~b(u) = f~_=[ 1 - ux [ d/z(x) in Proposition 1.1 analogously 

to (10), then (4) says that q, is differentiable at 0, which corresponds to the fact 

that the L~-norm is smooth at the point 1 (i.e. there is only one supporting 

hyperplane to the unit ball of L, at the point 1). 

PROPOSITION 1.3. Let e,, e2 be a basis [or a Banach space E over the reals. 

'There is a unique finite positive measure tz on R and a unique b >= 0 so that 

[[a,e,+a2e~ll=f;o [ a , x + a 2 l d l z ( x ) + b l a ,  l, a , , a 2 E R .  (11) 

b = 0 i f /I[" II is smooth at e2. 

PROOV. Let ,p(t) = 11 el - te2ll. If I1" II is smooth at e2, then we have equality in 
(9) and so Proposition 1.1 gives the representation (11) with b = 0. The integral 

in (11) is differentiable in a~ at a~ = 0, a2 = 1, which proves the uniqueness of b 

and/~ in this case. If I['ll is not smooth at e2 we have 

2b --- l im { ~  ( t )  - tq~'(t)} + l im {~o ( u )  - uq~' (u)}  > O. 

Let if(t) = q~(t) - b. i is convex and satisfies (8) and (9), with equality in (9). The 

fact that ff ~ 0 follows from the convexity of q~ and from (8): if u < v < t, then 

,p(t)- ,p(v)__< ,p'(t), ~(v)-  ,p(u)____ ,p'(u), 
t - v  V - U  

SO 
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2¢(0) _-> q~(t)- tq~ "(t) + ~o(u)- uq~ "(u) + v(~o "(t) + q~'(u)). 

Thus 2~0 (v) => 2b + v(lim,~®q~'(t) + lim . . . .  ~0"(u)) = 2b, using (8). Applying the 

case already proved, we have a unique finite positive measure/z on R such that 

(o ( t )  = f :~  I x - t I dlz (x) .  But ~0 (t) = ¢ (t) + b. Q .E .D.  

REMARK. The proposition may be restated as follows: Let e~, e2 be a basis for 

a Banach space E. Then there is a measure A and isometric embedding T of E 

into L~(A). T may be taken such that Te2 = la  for some set A. In that case, 

A(A), f-AI Te~l dA and the distribution of (Te,)la are uniquely determined by 

the norm of E. 

COROLLARY 1.4 (See C. Herz [5], and J. Lindenstrauss [6]). Every two- 

dimensional Banach space over the reals embeds isometrically in L,(0, 1). 

We can now prove our main result: 

THEOREM 1.5. Let ex, e2 be a basis for a Banach space E such that II ue~ + 

e2 II = II - ue, + e2 II, all u ~ R. If  F is an arbitrary Banach space, e ~. F an abstract 
element, let F ~ E  [e] denote the set of all expresions of the form x + te with x E F 

and t ~ R, with the norm IIx + te II--II(llx II)e, + te211~. Assume that the function 
q,(u)--II e2-  ue,II is differentiable at 0 and satisfies the following "smoothness- 

type" condition for some e > 0: 

(12) q(u)= ¢£(0)- qJ(u)+ uqJ'(u) = O(u2+e), as u--*O. 

I f  F ~E [e] embeds isometrically in L,, then F is isometrically isomorphic to the 

Hilbert space of its dimension. 

PROOF. A significant part of this proof was suggested by R. P. Kaufman. We 

may assume that d i m F  = 2, and that Ile~ll~ = 1. Let SF = {y E F;IlY II = 1}, and 
let T be an isometric linear embedding of F ~  [e] in L,(A), A a probability 

measure, T normalized so that Te =-1. By Propositions 1.3 and 1.1, for any 

y ~ S ~  we have 

(13) A({w;(Ty)(w)<=t})=½{l+q~'(t)}, t E R ,  

where q~(t)= l i e , -  te2[[E = Ily - te II- Thus all the functions Ty, y E SF have the 

same distribution. Let y,z  ~ SF be a basis for F, and consider the joint 

characteristic function of Ty and Tz: 

f (¢ ,n )= f exp(i¢(ry)+ i'o(rz))dA, I¢ ,n~R.  
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For any  ,II Y + [l l( y + SF, which implies 

(14) f(!~,rl)=f(ll~y+~lzllv, O ), ( ~ , r / ) ~ 0  in R 2. 

Accept for a moment  the fact that f is twice continuously differentiable. We have 

fe~(O,O)=f,,(O,O)-A, and let f~ . (0 ,0)=B.  Then by the chain-rule, 
02 
o~f(a~,[3~)l~o= Aa2+2Ba[3 +A[32, for any a,/3 ER.  On the other hand, 

a 2 
f(a~,/3~) = f(~ II'~Y +/3z IIF, 0), by (14), so - ~  f(a~,/3~)1,=o = II '~Y +/3z I1~" A. 

Thus II '~Y +/3z IIF = ,,2+ 2 W / A ) , ~  + ,~2, and so S~ is the linear image of an 

ellipse, i.e. F is isometrically isomorphic to the Euclidean plane. 

To see that f is twice continuously ditterentiable it is enough to show that 
f(Ty)2dA < o% and apply the dominated convergence theorem. (Then - A  = 

f (Ty)2dA ~ 0, which was used above.) By (13), we have A ({to; I (Ty)(to)[_- > t})= 

1-½~0' ( t )+½~0' ( - t )=  1-~0'(t) ,  wherever q~ is differentiable (we use the fact 

that ~0(t)= ~0( - t )  by the assumptions of the theorem). Noting that ~0(t)= 

t~ , it t > O, and that ~(0) = 1, we have 1 - ~o'(t) = ~ ( 0 ) -  ~ + ~ 0 ~ }  = 

q ( l ) = O ( t - 2 - ' )  by (12), and so ~:=,x{to;I Ty I(to)___ > X/n}< ~, which implies 

that :1Ty 12dy < ~  (see [8, p. 242]). Q.E.D. 

COROLLARY. 13 does not embed isometrically in L~, if p > 2. 

PROOF. Putting E = F =  l~, we have ~ ( u ) - - ( l + l u  I~) ~", so q ( u ) - - 1 -  

(1 + ] u  [~)"/P)-' = O (1 u 1'), as u ~ 0 .  Q.E.D. 

REMARK. In connection with the proof of Theorem 1.5, R. P. Kaufman raised 
the following 

QUESTION. Let p > 2. Does there exist a characteristic function f(s, t) of two 

random variables such that f(s, t) = f([ s 1~ + I t  ]P)'/P,0) for all s, t E R. 
It is shown in [2] that there is no infinite sequence X~,X2, . . .  of random 

variables such that the characteristic function f ( t l , ' '  ", t,) of X~, . . . ,  X, depends 

only on Itll~ +lt21~ + . . .  + It.I ~, and p >2 .  

2. Embeddings in Lp 

We can now answer the question when does 17 embed isometrically in L~. 

THEORE~ 2.1. Let 1<=p<o% l<=r<=oo. The only cases when l? embeds 
isometrically in L, = Lp(0, 1) are those included in one of the following facts: 
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a) L, embeds isometrically in Lp ]:or 1 <_ p <= r <- 2. 
b) L2 and Lp embed isometrically in Lp, J:or all p. 
c) Every two-dimensional Banach space embeds isometrically in Lt. 

PROOF. For the positive results see [2] and [5], [6], or Corollary 1.4 above. 

For p = 1 the negative result claimed is that 13,, r > 2 does not embed isometri- 

cally in L1, which was proved in Theorem 1.5. Fix 1 < p < 2, and assume that 12, 

embeds isometrically in Lp for some r~  [p, 2]. Let ]:,g be functions in Lp 

satisfying 

(15) I I ,~ f+ t~g l l~ - - ( lo ,  l ' + l t 3 l ' ) " ,  all a , ] 3 E R .  

If r < p, then Clarkson's inequalities (see, e.g. [9, sec. 14.5]) give 

(16) 2P/' -- k(ll f ÷ g IIp ÷ 11 ]: - g II p) --< l[ ]: II ~ + II g [1 v -- 2 

which is a contradiction. If 2 < r < ~, consider 

fo' (17) ~o(t) = (1 + l t l ' )  ~''-= I [(~o) + tg(o~)l~&o. 

Using the first expression for q~ we have ~0"(0)= O, since r > 2. In the second 

expression we may assume that f _-> .0 almost everywhere. Let A = {o~; f(w) > 0}, 

and let c = f-AI g(w)l  pdo~. q~ = ~¢1 + q~z, where q~l(t) = f A l f +  tg I p, ~¢2(t) = c It [P, 
t ~ R. We have ~o ~(t) = pfA I f  + tg I p-I g. By Fatou's Lemma we have 

lim ~[(t)- ~[(O)>= p fA limlf + tglP-'- ff-'g = p(p_ l) fA ff-2g~>=O" 
,'-"ff t ,-'~ t 

If c > 0 ,  we thus get ~"(0) = + ~ .  If c = 0  we have glA# 0, and so 

lira q~'(t)- ~0'(0) >= p(p _ 1 ) (  f f -2g2>0 .  
,--'~ t JA 

Both cases contradict the fact that ~"(0)= 0. Finally, l~ is not smooth. 

Now fix 2 < p < ~, and assume that 12, embeds in Lp for some r #  p,2. Let f, g 

be functions satisfying (15). If r > p, we obtain a contradiction by reverting the 

inequality in (16). For 2 # r < p, we keep the definition (17) and the notation 

introduced subsequently. If 1 < r < 2, then the first expression in (17) gives easily 

q~"(0) = + 0% while the second one gives ~"(0) = faf f -2g 2 + c • 0 < ~. If 2 < r < oo, 

we have q~"(0) = 0 from the first equation in (17) and q~"(0) = fAff-~g 2 from the 

second one, forcing glA = 0. But then (17) gives (1 + It I') '/' = (1 + I t  I~) 1/~, which 

is absurd. 
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Finally note that l~ and l~ do not embed in Lp, 1 < p < ~ since the latter is 

smooth. Q.E.D. 

REMARKS. (i) These results show complete analogy to the isomorphic theory 

(cf., e.g. [7, II.3.c.]). In fact, we can say that l, embeds isomorphically in Lp iff L, 

embeds isometrically in Lp iff 13, embeds isometrically in L r 

ii) We have considered here only linear isometric embeddings, which is 

however no loss of generality, since every isometric embedding in a strictly 

convex normed space is aftine, and since by [2] a normed space embeds 

isometrically in L~ iff it embeds there linearly and isometrically. (E is strictly 

convex if II x + y H = II x 11 + II y II implies x = 0 or'y = ax, some a --- 0; T is affine if 

x ~ Tx - TO is linear.) 

(iii) The differentiation under the integral sign was justified in each case by 

the dominated convergence theorem and Holder 's  inequality. 

Added  in proof. While this paper was in press, Professor H. Porta brought to 

my attention the recent paper of W. Rudin, L P-isometries and equimeasurability, 

Indiana Univ. Math. J. 25 (1976), 215-228, in which the uniqueness part of 

Proposition 1.1 is proved in more generality, answering also (in the positive) the 

second remark to that Proposition. Rudin's proof, while covering the complex 

case, is not constructive. Note that the complex analogue of Corollary 1.4 is false 

(e.g., complex l~ does not embed isometrically in complex L~). 

More applications to the structure of subspaces of L1 will be published 

elsewhere. 
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